

Written by Florent Poux – © All rights reserved 4 | P a g e

3D TUTORIAL

When searching for Juno in the bar, I look for the

necessary pieces of Packages that would be useful, of

which uber-juno and juno-client. © F. Poux

Note: If the REPL does not seem to launch

correctly and does not display the Julia logo,

head over to the Juno Client Settings from the

Package menu and verify the path to tour Julia

executable.

The path to my Julia executable. © Florent Poux

Bonus: Julia with Google Colab

You can also use a google Colab environment,

but that needs a specif block of code to use

Julia instead of Python. For this, you will find at

this link a template that makes it possible to

work directly within Colab. It also contains the

main code of this tutorial.

Note: Every time you want to use Julia on the

Google Cloud, you need to run the first block,

refresh the page, and continue directly to the

second block without re-running the first until

every element is ready for you.

STEP 3: LOADING DATASETS

Great, so now we are ready to Julia code. First,

let us discover where we are working, so our

current working directory, using the command

pwd(). Hmm, it looks like we are in the base

directory, so let us change it to a project

directory that you would create where you

want to store most of your project (data,

results, …) with
cd(“C://DEV/JULIA/TUTORIALS/3D_PRO

JECT_1”), followed by pwd() to check out the

new path.

Okay, we are all set. Let us download a dataset,

for starters, a small noisy point cloud. For this,

very handy, you can use the following

command:

download("https://raw.githubuserco

ntent.com/florentPoux/3D-small-

datasets/main/tree_sample.csv","po

int_cloud_sample.csv")

Note: The download() command first takes the

link to the data you want to download, which I

dropped on my GitHub account, and then

specifies its name locally after download.

Great, we now have a local version of the data

in our working directory that we specified with

the cd() command. Now, how do we load it in

the script? well, we will make use of a Package

called DelimitedFiles.

Note: A Package is a handy set of functions,

methods, classes, and more that allow you to

build on existing code without writing

everything from scratch. The DelimitedFiles

package allows manipulating (e.g., read and

write) delimited files like our current point cloud

at hand.

For using a package, we first have to load the

package manager utility by just typing using

Pkg. To add a new package, it is pretty simple;

we just write Pkg.add(“DelimitedFiles”), and

wait until the download + requirement checks

are finished.

Written by Florent Poux – © All rights reserved 5 | P a g e

3D TUTORIAL

What is great about this is that you do not have

to worry about dependencies (other packages

needed by the current) as all is handled for you!

Cool, huh? And on top, we can create excellent

packages easily to ensure reproducibility of the

results, for example, and independent

environments, but that is for another tutorial

😉.

Note: Managing packages is then pretty

straightforward, and we have a bunch of

functions to update the packages, to know their

current status, if we have any conflicts between

them (rare), or to load unregistered packages by

other like-minded coders, even one of your

future local package 😉. I usually manage them

by using the REPL and entering the package

manager with the command] in the right

environment. To exit the package manager, one

needs just to do Ctrl+C .

Ok, now that the package is installed (you only

need to run this once per environment). You

can use it in your current project by typing

using DelimitedFiles, and also, if there are no

conflicts of function names, you do not need to

write from which package a function comes. to

read a delimited file DelimitedFiles.readdlm() is

equivalent to readdlm().

From there, let us read the point cloud at hand

and store the data in the variable pointlist:

pointlist=readdlm(“point_cloud_sam

ple.csv”,’;’)

The first lines should look like below.

STEP 4: FIRST PRE-PROCESSING OPERATIONS

Okay, pretty cool up until now, hun? And now,

let us see the first real surprise if you are used

to other programming languages: indexing.

You can try doing pointlist[0] to retrieve the

first element. What are we getting? a

BoundsError.

Haha, in Julia, indexes start at 1, so if you want

to retrieve the first element (the X coordinate

of the first point), you just input pointlist[1] that

returns 41.61793137. A bit confusing at first, it

is pretty handy and logical, at least from a

scientific point of view 😅. So now, if you want

to retrieve the first point, then you need to

know that indexes work on the first axis (rows)

first, followed by the second axis (column(s)),

and so on. Thus, to retrieve the first point (first

row and every column):

pointlist[1,:]

Very cool, and now, to get further, if we want to

store the coordinates in the points variables

and the normals in the normals variable, we just

do:

points = pointlist[:,1:3]

normals = pointlist[:,4:6]

Note: If you want to know the type of a variable,

typeof() is what you are looking for.

typeof(points)will display that we deal with

Matrices, which are an alias of 2-dimensional

arrays. Also Float64 is a computer number

format, usually occupying 64 bits in computer

memory; it represents a wide dynamic range of

numeric values by using a floating radix point.

Double precision may be chosen when the range

or precision of single-precision (Float32) would

be insufficient.

One last straightforward pre-processing step

would be to know how to quickly sample the

variable extracting, let say, 1 line every tenth.

For this, we can do the following (a bit like

